مکانیسم ایجاد و متانسل سلول‌های سرطان به‌دیکم

درک‌کننده‌ی امروزی

دکتر علی صادقی‌ارومی
دکتر پاک پرایت
جاودی نقی‌نژاد

۱. آزمایشگاه کنتارل کیفی غذا و درمان، ارومیه، ایران
۲. مرکز علم و فناوری نیستش، دانشگاه علوم پایه، دانشگاه جامع آماده، اصفهان، ایران
۳. گروه مکروپولیزی، واحد ملاکن، دانشگاه آزاد اسلامی، ملاکن، ایران

کلیدواژه‌ها: سلول‌ها، منطقه‌ای، سرطان
۱۳۹۷ پژوهش مقاله: ۱۲/۳۰/۹۷ پژوهش مقاله: ۳۰/۵/۹۷
پوست و زیبایی: تایستان ۱۳۹۷، دوره ۹ (۲): ۱۳۴-۱۴۰

مقدمه

سرطان معمولاً در اثر نقص در عملکرد مکانیسم‌های تنظیم رشد و تقسیم سلولی ایجاد می‌شود. این نقص در عملکردی خود در اثر ایجاد آسیب‌های زننگی اغلب به‌وسیله مواد شیمیایی، هورمون‌ها و بی‌رنگی اوقات از ویروس‌ها بوجود می‌آید. سرطان بعد از به‌کارگیری قلمی-عرقی دویم علت عمده‌ی میگر در جهان است. برای اماره‌های منتشرشده‌ی در جهان سال‌ها ۵ میلیون میگر در جهان روی می‌دهد که بیش از ۵ میلیون از آن‌ها از انواع مختلف سرطان نسبت داده می‌شوند.

ملانوم‌های بدخم‌کردنی از ۲/۲٪ از کل سرطان‌ها را شامل می‌شود ولی عامل ۱٪ مکرو‌پوری‌های ناشی از سرطان است. عوامل مستعد کشنده‌ی این بیماری داشتن نزاد

پوست و زیبایی: تایستان ۱۳۹۷، دوره ۹، شماره ۲

سفید، در معرض آفت‌بیان شدن سیاست‌های خانوادگی، نژادی، سیاست‌های مالی مالی‌های عمده، سرکوب اجتماعی و اجتماعی غیرجنسی است. بررسی داده‌های پزشکی در آمریکا بین سال‌های ۱۹۷۵ تا ۲۰۰۶ نشان داد که اندازه‌ی بروز میان...
سرکوگنر تومور را کد می‌کنند: P16 و P14 (P14 ARF) ARF واسطه CDK4/6 را معرک کرده و باعث غیرفعال‌سازی P53 که در سلول‌های متابولیسم‌منشأ تومور ریش‌های كروتیناتیک دارای ویژگی‌های منحصر به فردی استند که آن را قادر به تکثیر و مهارت به پاف‌های طبیعی غیرآزاده می‌کند. مهارت از‌طرفشان توانایی اتفاق می‌افتد و همگام با ریزگر از وصف از لون برای رشد به پاف‌های دوردست حمله می‌کند.

سباری از تحقیقات نشان داده که رشد و متاستاز تومورها به ایجاد رگ‌های جدید و رفع نیازهای تغذیه‌ای تومور باستگی دارد. فرانک ریزگر به‌هیچ‌وجه در حقیقت در پی آن اجات را می‌دهد که بیشتر از بیشتر ممکن حالت کننده. تومورها به‌دست مدل‌ساز ملانوم دارای عواملی بوده و رشد سریعی دارند. با فرازی ریزگر سبب می‌شود و به اندام‌ها دیگر منشتر می‌شوند. نیاز به درک ارتباطنگ‌ریشه و رizen سرطان ملانوم باعث به‌حالی احساس می‌کنند. فرانکی این احتمال‌هایی را ارتباط بین سطح دارم. در حالی که CDKN2A یا الکترای سیستم مادری ملانوم در درمان‌هایی ملانوم را فراهم نماید.

ژنتیک

حدود ۲۰ درصد از موارد ملانوم‌های ارضی (۲) تا ۲۰٪ از کل ملانوم) درنتیجه متاستاز رشد‌زا در زن تنظیم‌کننده سیستم سلولی تحت عنوان مهارکننده گروه‌ای وابسته به سیگنال کدام اتفاق می‌افتد. درحقیقت (CDKN2A) ۲A همه موارد ملانوم پوستی دارای جهش های سوماتیک در مقیاس A در لوسکون گرومولوم ۲۱P21 مشاهده گردیده است.

فرایندهای گرومولوم P21 یا درنتیجه تغییر در قالب خواندن دنو پرتوژنیم متفاوت
هملولگ B شناخته شده است. در برخی پروتوکارکینوم‌ز منطقت به خلاه‌های پروتئین کیت‌ناز است و بیشترین جهش‌های این زن ناشی از جهش نقطه‌ای اسدی م است و با دستگاهی کنیک از اندیسی است.

جهش این زن تعدادی از عوامل سرکوب کننده سیستم ایمنی را تولید می‌کند که به رشد تومور بیشتر کمک می‌کند.1) شکل 1: 1 با آنگر زن‌ها و پروتئین‌های تشکیل دهنده سرطان ملایم می‌باشد.

لوروس CDK2A برای مارک‌نده‌های تومور CDK2A که برای بیشتری از پیشرفتهای مایع DNA سلولی و تریم DNA از ارتباط سلول الأولى و مسرای p53 از ارتباط می‌باشد. موت‌سوزی که ۱۶ p16INK4a CDK4 که به‌طور فعال با حفظ می‌کند و باعث کاهش صدها می‌شود. یکی از اشاره‌های حساسیت به ملایم‌ها ARF کنال گیمرده ملایم‌کاری ۱ که برای تنظیم سنتر اولماتین شناخته شده و به‌منظور بهبود تریم و کاهش استرس کمک‌ناکی است که به‌طور کامل شده باشد.

۱ در این زن توجه به شناسایی ملایم‌ها CDKN2A و شناسایی پروردهای CDKN2A و CDK4 است. چراکه می‌شود که این زن روی کرومبوزوم q14 فرار دارد و مسول کنترل پیشرفته چربی سلولی از ارتباط محلولی G1 سلولی است. در خلاه‌های مستعد ملایم زن CDK4 عامل جهش بوده است و اسید آمینه‌ای آزمایشی را تحت تأثیر قرار می‌دهد. ناحیه‌ای انتقال این آزمایشی اینمی‌که در ناحیه‌ای آزمایشی CDK4 پیدا کند پروتئین p16INK4a این زن را تعیین کند. با تأثیرات جهش این زن در سطح سلولی مسیر برای مشاهده زن می‌باشد.14

شکل ۱: همان‌هم‌سوه بیماری قارچی می‌شود. فنوتیپ زن‌ها قارچی با پوست روشی، میوه قارچی، وجود خال از افتراق حساس سلولی به پزشکی خورسید با افتراق خطر روز ملایم هرمان است.۱۵

۱۲۲ مکانیسم‌شناسی ملایم‌بی‌دی‌خیم

پوست و زیبایی، ناهن، ۱۳۹۷ دوره، ۹ شماره ۲

21. تربیت و زیبایی، ناهن، ۱۳۹۷ دوره، ۹ شماره ۲

22. تربیت و زیبایی، ناهن، ۱۳۹۷ دوره، ۹ شماره ۲

23. تربیت و زیبایی، ناهن، ۱۳۹۷ دوره، ۹ شماره ۲

24. تربیت و زیبایی، ناهن، ۱۳۹۷ دوره، ۹ شماره ۲

25. تربیت و زیبایی، ناهن، ۱۳۹۷ دوره، ۹ شماره ۲
بروتونیه‌های اتصالی عمل می‌کند که با هم‌دیگر از فعال سازی مجعد دودمان زاینده‌روز سراسری (deleterious germline) و زن‌های مولد برتوانی (pluripotency genes) گلوگری می‌کند. ۳۹

متیلیسیون DNA روي بقاهاي سيتروزين مقدم برگوئن اتفاق می‌افتد که روی رشته‌های مسوم قرار دارند (سی‌پس) تشکیل می‌شود که شتاب می‌گیرد (CpG)

میزان استرس آکسیباتوی را تعیین می‌کند. برخی از آللهای ۲۴ OCA2 مبتنی به نوع MC1R مرتبط با ملانوم‌های شود. آن ERK1 / ۲ و از این رو، برای تنظیم فعالیت ۲ / ۱ بسیار مهم برای پروکلسیون است. یک حیال فال در این زن در تومور‌های ملانوم رایج است و منجر به تکثیر غیرکنترلی و حفظ فنوتیپ‌سازنمایی شده می‌شود.

در سال ۱۹۷۵ دو گروهی که مستقر روی سونیج مولکولی که در خلا تکنیک موجب نمایش دهنده‌نیازهای می‌شد که با او اوین بار پیشنهاد داده که متیلیسیون DNA مواد تأثیر متفاوت می‌شود. یک درون‌پسی مربوط می‌شود. یک روش نشیبی‌ای چشمگیر داشت با سردر اینکه متیلیسیون DNA این DNA احتمال تر است که در موقعیت‌کردن ۵ متیل‌سیتروزین رخ می‌دهد و موجب ایجاد ۵ منشأ سیتروزین ۵- (mC) با یا عبات دگر یا پنج می‌شود.

امروز محققان این دانه که متیلیسیون گفتگویه پسونیج ساده را ایجاد نمی‌کند و مکانیسم‌های epigenetic (چندگانه‌ی بسیار) سالزمان‌دهی‌ها با هم همکاری می‌کند تا زن‌ها را در شرایط خاص و به‌صورت جایگاه‌‌محور روشن یا خاموش که کانین وجود

برای پایداری حالت خاموش زن‌های DNA پروتوتروپ برای پایداری حالت خاموش زن‌های مستقیم چیست محسنی می‌شود. در ابتدا، تصور بر این است که این متیلیسیون به‌صورت هدفی برای...
این نقش لقب تهیه جزایر CpG را برای TET را به یاد می‌آورد. این بدان معناست که TET بازی DNA در ابتلا به کمر شناخته شده است. مولکول DNA به یک غیرفلای افتاق می‌افتد و به‌ویژه این مرگ برای انرژی‌نیروز (آپپیتوژ) موجب می‌شود که تا هر چرخه از تکثیر سلولی، خصوصیات دملایسیون مناسبی متفاوت شود. این موضوع نشان می‌دهد که این دملایسیون الگوی DNA به پیش‌بینی‌های سلولی سلول‌های مبتلا به یک ارتباط شدی انتی‌ژنیک (myeloproliferation) هم در بیماران مبتلا به TET.

Ten Eleven Translocase (TET)

در ابتلا، کشف یک پروتئینی شناخته شده توسط Ten Eleven Translocase (TET) می‌باشد. این پروتئین TET سلول‌های خاصی در شرایط یکی از این مولکول‌ها را از انتقال DNA به سلول‌های خاصی در تکثیر می‌کند. این پروتئین TET سلول‌های خاصی در شرایط یکی از این مولکول‌ها را از انتقال DNA به سلول‌های خاصی در تکثیر می‌کند. این پروتئین TET سلول‌های خاصی در شرایط یکی از این مولکول‌ها را از انتقال DNA به سلول‌های خاصی در تکثیر می‌کند. این پروتئین TET سلول‌های خاصی در شرایط یکی از این مولکول‌ها را از انتقال DNA به سلول‌های خاصی در تکثیر می‌کند.

مانند

پوست و زیباییت، تابستان، 1397، دوره 9، شماره 2
چرخه تقسیم سلولی. هنگامی که یکی از پروتئین‌ها در مسیر جهش قرار گرفته، است، می‌تواند موقعیت روشی با خاموش داشته باشد که گامی ضروری و مهم در توسه و سیاره سلولی است. البته MAPK باعث فسفوریل‌شدن پسیاری از پروتئین‌ها و به‌طور خاص S6 رابرتوزومی و mRNA باعث تغییر ترجمه پروتئین در C-myc MAPK یا MAPK-GEF پروتئین‌های از فعالیت‌های رونوپسی را در دست دارد و همچنین می‌تواند MAPK را فعال نگه دارد. MAPK و رونوپسی C-Fos از تغییر فعالیت و عوامل C-Fos منجر به تغییر MAPK می‌شود و این تغییر برای تغییر چرخه سلولی مهم است.

شکل ۱: مسیر‌های انکوزنیک توسعه ملانوم

انجام داد. مسیرهای سیگنال همچنین می‌تواند توسط انکوزن‌ها داخلی غیرفصل و توسط محکم‌های خارجی فعال شود. در جمله مشترک برای پیش‌رفت‌بندی سرطان در انسان وجود دارد: تکثیر سلولی و آپوتوزی (MAPK) پروتئین کیت فعال‌شده توسط میتونز (MAPK) اغلب باعث سیگنال‌های ERK1/2 برای گیرنده‌ها فاکتور رشد شناخته شده است. مسیر MAPK در ایجاد ملانوم نقش مهمی دارد که در مسیر رایان‌شدن MAPK/ERK1/2 زنجیره‌ای از پروتئین‌ها در سلول است که سیگنال را از یک گیرنده بر روی سطح سلول به DNA در هسته سلول منتقل می‌کند. سیگنال زمانی شروع می‌شود که یک مولکول سیگنالتیک به گیرنده روی سطح سلول متصل شود و زمانی که در هسته سلول پروتئین را بیان می‌کند باعث ایجاد تغییر در سلول می‌شود. مانند

شکل ۲: مسیرهای انکوزنیک توسعه ملانوم

پوست و زیبایی. تابستان ۱۳۹۷، دوره ۹، شماره ۲
مکانیسم‌های متانژت

سلول‌های مالاتوم‌ها گیاهان نهفته از گسترش متانژتایک را دنبال می‌کند. برخی از سلول‌های خاص مسئول مکانیسم‌های متانژتایک ملانوم هستند. یک تحقیق در دانشکده پوست دانشگاه ترویکن آمین بین سال‌های 1976-1994 غربالگر خودکار ملانوم‌ها را اندازه‌گیری کرده است. این 366 نفر مبتلا به ملانوم، در حال پیشرفت، 22 درصد 20/50 متانژتایک به غد لیپوماژ و 50 درصد 20/50 متانژتایک به نوعی از طبیعی دیده می‌شود. در سیستم ملانوم‌ها، در این مطالعه به کمک آزمون‌های آماری به‌دست‌آمده‌است که برای تشخیص متانژتایک ملانوم به‌طور کلی مانند ملانوم‌ها اغلب به‌گرهای این‌فلاوی مهاجرین استفاده می‌شود. البته به‌صورت غیرکاملاً ممکن است که به‌صورت افتراقی در این‌صورت این‌فلاوی سرطانی نشان دهنده بوده و به‌طور کلی کاملاً مانند ملانوم‌ها است. این‌فلاوی مصنوع‌یابی کاربردی ملانوم‌ها و در این‌صورت مکانیسم‌های متانژتایک ملانوم‌ها را دستگاهی که در این‌صورت مطالعه‌های بیشتری در این‌گونه سلول‌های سرطانی انجام شود.
سپل‌های ملانوم می‌توانند گیرنده‌های کومپاین (مرویت C-X-C) را بیان کنند. چهار یک نشان‌دهنده نوع کومپاین و گیرنده‌های کومپاین‌ها می‌باشد. در بررسی Takeuchi که در سپل‌های ملانومای پوستی و روی‌پوستی از مجموعه گیرنده‌های تایپ در تورم‌ها به‌صورت غیرکناره‌بندی شده‌اند، گیرنده‌های تایپ در تورم‌های روی‌پوستی و سپل‌های دندان‌پزشکی پیش در نشان‌دهنده است. ۴۱-۴۴

به‌طور کلی، نشان‌دهنده‌های کومپاین‌ها (ECM) گی‌م‌دی‌های ۱ و VEGF-R2 (VEGF-C و VEGF-D) که به کمک VEGF به سپل‌های ان‌دی‌لابل‌ن می‌توانند به ویژه در سپل‌های ملانومای پوستی و روی‌پوستی قرار دهند. ژن‌های VEGFR-1، VEGFR-2 و VEGFR-3 و VEGF-C متصل می‌شوند، در حالی که VEGF-D و VEGF-C قرار دهند. به ترتیب، کمک‌دهنده‌های VEGF-۱ و VEGF-۲ VEGF-C چنین می‌تواند سپل‌های ملانومای پوستی و روی‌پوستی را ترشح کند. ژن‌های VEGF-C به‌طور کلی ایجاد لقوئندوز در تورم می‌شوند.

در نظر بسیاری از شرایط جامعی برای مکانیسم‌های سپل‌های ملانومای وجود ندارد که در مطالعات انجام‌شده می‌توان به‌طور کلی در سپل‌های نگهداری‌های CCL ۲۱ و VEGFR-۳ چنین می‌تواند. ژن‌های VEGF به مقام‌های وابسته به تورم‌های سپل‌های ملانومای پوستی و روی‌پوستی به‌طور کلی در سپل‌های ملانومای پوستی و روی‌پوستی قرار دهند. ژن‌های VEGF-C و VEGF-D به‌طور کلی در سپل‌های ملانومای پوستی و روی‌پوستی قرار دهند.

جدول ۱: گیرنده‌های VEGF و گیرنده‌های کومپاین روی سپل‌های ملانوم

<table>
<thead>
<tr>
<th>سپل‌های ملانوم</th>
<th>گیرنده‌های کومپاین</th>
<th>گیرنده‌های کومپاین</th>
<th>گیرنده‌های کومپاین</th>
<th>گیرنده‌های کومپاین</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCL ۲۱/SLC</td>
<td>CCR7</td>
<td>CCR7</td>
<td>CCR7</td>
<td>CCR7</td>
</tr>
<tr>
<td>CXCL ۱۲</td>
<td>CCR4</td>
<td>CCR4</td>
<td>CCR4</td>
<td>CCR4</td>
</tr>
<tr>
<td>CCL ۲۷</td>
<td>CCR10</td>
<td>CCR10</td>
<td>CCR10</td>
<td>CCR10</td>
</tr>
<tr>
<td>CCL ۲۵</td>
<td>CCR9</td>
<td>CCR9</td>
<td>CCR9</td>
<td>CCR9</td>
</tr>
</tbody>
</table>

CCR: cc-chemokine receptor; CCL: chemokine cc- ligand.
آسیب به سیستم ایمنی بدن
سلول‌های ملانوم به رشد و گسترش خود به سیستم ایمنی آسیب می‌میرد. سیلول‌های NK از سوی می‌کند. سیت‌آتیسم NK2D به ببیش اتمام و بافت‌های حضور داشته و در مقابل سرطان دفاع می‌کند. NK2D2 شرکت‌کننده یکی از زیر‌واحدهای سیت‌آتیسم NK است که گیپرهای Janus یا کلیکرگیری می‌کند. انگیوستاتین M-۱۵۳، TNF-α، NF-κB، IL-۶ و IL-۱۲ تجهیز‌هایی را در این سیت‌آتیسم به کار می‌برند. سیت‌آتیسم NK نیز کنترل حساسیت به سیلول‌های ملانوم را کنترل می‌کند. از این رو، سیت‌آتیسم NK می‌تواند یکی از اکسپرسیون سیت‌آتیسم M-۱۵۳ را در سیت‌آتیسم NK می‌باشد.

آمبوالی
وضعیت بروتونومیتوکسی مسیر مناسب را تقویت می‌کند. در حالی که در حال سیت‌آتیسم مغلوب گیری، سیت‌آتیسم NK به صورت ویژه‌ای با کلسترول و پلاک‌ها در گردش هستند. طوری که مولکول‌های جداسازی مانند فکتور بهای P، سلکتین، فیبرینون و لیپوزیوتین اسید به بیان تشکیل مناسب نمی‌یابد، اختلالات بروتونومیتوکسی مادرزادی باعث تشکیل مناسب‌نافذی ریه می‌شود. در یک محیط مادرزاد، تهیه‌کننده فعال اکسپرسیون تغییر کننده NK2D به میزان سیت‌آتیسم NK در این فاز می‌باشد. در حالی که FAKT به صورت ویژه‌ای باعث افزایش تولیدی تغییر کننده NK2D می‌شود.

تکشیک رکه‌های خویی
تشکیل گزینه خویی جدید در نماد‌های اولیه و دچار مناسب‌سازی می‌باشد. این حالت با تشکیل رک در قسمت پایین بافت مشخص می‌شود. تجمع در محیط پوششی به شکل PH به تغییر کننده‌ها، سیت‌آتیسمilk، کلاژن، فکتورهای رشد، مواد مغذی و اکسپرسیون معنی‌دارهای از طریق مکانیسم‌های مختلف می‌شود. مولکول‌های ایپدرین در محیط کم اکسپرسیون فنریت که نقش مهمی در تغییر کننده تولیدشناسی ارتباطی تخته‌سازی از الفینیکسی QAK، کلیکرگیری ضربه‌ای از فاکتور α تغییر کننده NK2D می‌باشد. منابع اکسپرسیون بافت‌های فاکتور α در می‌شود.

پیش‌بینی روی سرول‌های ملانوم
عمل تغییر کننده FAKT به داده‌های VEGF-A
حالت از پژوهش‌ها دارای ضریب همبستگی با مناسب‌سازی سلول‌های ملانوم می‌باشد. فاکتور بهای P به شکل مورب‌سازی سلول‌های ملانوم می‌باشد. روابط بین تغییر کننده FAKT به داده‌های از طریق تحلیل mRNA مناسب‌سازی FAKT به داده‌های VEGFxxx b. VEGF رگ‌زایی دارد.

پوست و زیبایی تابستان ۱۳۹۷، دوره ۹، شماره ۲
نتیجه‌گیری

اگرچه در سلولی تا G1 S G1 از CDK6 و CDK6 از G1 S G1 S S گسترش می‌کند، CDK6 در مواردی همانچنین در مستلمات S سیتیابین‌ها در تومور قابل توجهی از بهبود می‌باشد. BRAF RAS-RAF-ERK در فعالیت، تومور دچار دردهای درمانی می‌باشد. در برخی پتی‌های درمانی، BRAF FRAFR برکه‌های همبستگی در تومور و در همانطور که در فعالیت مشاهده می‌شود، در درمانی‌های درمانی در کلاه‌های استرس، اما در استری‌های جدید، اعدام‌های دمایی در جهت درمانی در محیط‌های بالینی، CDK6 می‌تواند با تأثیر مثبت، افتاده از CDK6 با یک همبستگی برخی از پژوهش‌ها نشان داده است که در این نوع در سلول‌های آنزیم‌ها و آنزیم‌های توموری صورت می‌گیرد. در حال مواردی از مکانیسم‌ها و مستلزم‌های سیتیابین‌ها در می‌تواند فرصت‌های سایش‌های برای درمان می‌باشد. را در این نوع در می‌باشد.

نتیجه‌گیری

از تام کسانی که در این مطالعه ما را باید کردن
بقارسم آقایان حادثه عربی آسیایی با نظر
مشاوره‌ها بپولوژی مولکولی تقدير و تشریح می‌گردد.

نتیجه‌گیری

از تام کسانی که در این مطالعه ما را باید کردن

 backwards from jdc.tums.ac.ir at 11:17 IRST on Friday October 16th 2020
References

Cancer is a genetic condition. Some cancers are inherited, but most are caused by mutations in somatic cells. The cause of these mutations is inherent error in the transcription of DNA or exposure to carcinogens. Malignant melanoma is the most serious type of skin cancer which develops from pigment-containing cells known as melanocytes. The most potent risk factors for melanoma is the presence of multiple benign moles or abnormal spots, and family history of melanoma. Metastasis is a complex multi-stage process that results in development of secondary malignant growths and the spread of cancer cells to other areas of the body leading to patient’s death. Melanoma metastases are mainly to the lymph nodes, liver, lungs, and central nervous system. The aim of this article is to review the mechanisms of development and metastasis of melanoma by searching database such as SID, Google Scholar, American Electronic Library, Springer and PubMed.

Keywords: melanoma, metastasis, genetics, cancer

Received: Aug 21, 2018 Accepted: Jul 03, 2018

Dermatology and Cosmetic 2018; 9 (2): 120-134